If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+16x-25=0
a = 16; b = 16; c = -25;
Δ = b2-4ac
Δ = 162-4·16·(-25)
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{29}}{2*16}=\frac{-16-8\sqrt{29}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{29}}{2*16}=\frac{-16+8\sqrt{29}}{32} $
| 0.03x+7.1=6.29 | | 2/3=x/63 | | 2/3=x/6.3 | | 184=x^2+x+7 | | -15x+2(x-3)+8x=5x-56 | | -1.04y+129.08=125.44 | | 9x=18/27 | | .03x+.15(x+8000)=1920 | | -5/8p=-1/2 | | −1.04y+129.08=125.44 | | -25=-2x-9 | | 7/10=x12 | | X×4x-1=x+1×3x | | (-3,1)(x,-1)=(-5,-1) | | 2x+5/12+x-10/12=x+7/8 | | -18y-37=-109 | | 3-(-x-3)=25 | | 9(n-3)=4(n+7) | | –8−2s=2s | | 6x=14/21 | | 4x-3=145x+4=2 | | 3(4c+5)=10+12c–4c | | –7p=–9p+10 | | 2(4c+5)=10+12c–4c | | 15y-15y+4y+2y-2y=16 | | 12+1.6b+11-18=20 | | 5(x+4)=7x+48 | | y=7.45+650 | | 3x+23=15x-25 | | -9m-10=-17m-82 | | 9x²-25-144=0 | | 7x-31=4x=5 |